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ABSTRACT 
AI has been increasingly adopted in user experience (UX) anal-
ysis, in which UX evaluators review test recordings to identify 
usability problems. However, most AI-infused systems apply fully 
automatic approaches, leading to distrust from UX evaluators. In 
my dissertation work, we consider AI as assisting, not replacing 
human judgment. Through an international survey, we investigated 
the current practices and challenges of UX evaluators and iden-
tifed an opportunity for AI assistance. We then studied nuanced 
cooperative work between UX evaluators and AI, by employing 
either non-interactive visualizations or interactive conversational 
assistants (CAs). The next steps include building upon our fndings 
about the reactive Q&A dynamic with CAs, by exploring how a 
proactive approach or a combination of visualizations and CAs may 
better support UX evaluators. This research will identify interac-
tions and representations that give rise to productive and trusting 
collaborations with AI. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in collab-
orative and social computing; Natural language interfaces. 
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1 CONTEXT AND MOTIVATION 
User experience (UX) is central to the adoption of technology be-
cause usefulness and usability defne the efcacy and capacity of the 
human-system relationship [19, 35, 42]. In order to achieve smooth 
user experiences, UX evaluators conduct usability testing to detect 
and address usability problems. However, analyzing usability test 
recordings is challenging and time-consuming [5, 7, 10, 36]. UX 
evaluators have limited time and resources, which could lead to 
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missed information or misinterpreted problems if only one person 
completes analysis [10, 17, 26, 36]. Despite the value of working 
with others to improve reliability and completeness, few evaluators 
employ collaboration in practice [10, 11, 26]. In the international 
survey of 279 UX evaluators that I conducted in 2021, only 37% 
reported collaboration when analyzing the same recordings [26] 
and in other cases, it was found that matching teams or pairs was 
costly in terms of time, resources, and efort [7]. Thus, prior work 
shows that although individual analysis can be problematic, efec-
tive collaboration is often hindered by limited resources. 

To alleviate the scarcity of human-human collaboration, AI as-
sistance is considered an efective tool that could boost the ef-
ciency of UX evaluators and reliability of results [6]. Some com-
mercial analytical platforms already contain features derived from 
AI and machine learning (ML) (e.g., emotion detection [44], senti-
ment analysis [43]). Researchers have also incorporated ML and AI 
into the UX feld [16, 22, 37, 38, 47, 49], primarily using fully auto-
mated methods that track user interaction events like keystrokes 
or mouse movements. However, they lead to incomplete results 
because some usability problems are very difcult to capture, or 
cannot be captured automatically at all [14]. Furthermore, fully 
automated systems lack transparency and are viewed with distrust: 
UX evaluators face challenges in understanding AI’s capabilities 
and are skeptical of AI-generated results without explanations of 
the underlying algorithm [41, 46]. Thus, instead of full automation, 
we consider AI as an assistant, to augment manual analysis rather 
than replace skilled knowledge and reasoning. We posit that an 
interactive human-technology partnership may help UX evaluators 
to discover usability problems that may be overlooked by solely 
manual or automatic methods. In sum, my dissertation research in-
volves the following steps towards crafting human-AI collaborative 
usability analysis: 

• We investigate the current practices of UX evaluators and 
identify opportunities for AI assistance [26]. 

• We design and evaluate a visual analytics tool that displays 
AI-driven features extracted from usability test recordings 
to UX evaluators [41]. 

• We then explore how interactive conversational assistants 
(CAs) may enhance human-AI collaborative analysis by un-
derstanding the range of questions UX evaluators would ask 
an AI assistant [under review]. 

• We propose a user study that investigates nuanced proactive 
interactions between UX evaluators and conversational AI 
assistants. 

• Finally, we propose a summative study to validate our ap-
proach. This study will examine how UX evaluators utilize 
our tool that provides a combination of visualizations and 
CAs to improve analytic performance. 
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2 BACKGROUND AND RELATED WORK 

2.1 Current UX Analysis Practices and the Need 
for Collaboration 

Usability testing is a frequently employed method for detecting 
usability problems [7]. UX evaluators assess recorded user sessions 
by observing user actions and writing notes simultaneously [5]. 
However, analyzing recordings using these manual approaches is 
challenging and time-consuming because evaluators have limited 
time and resources, which could lead to missed information or 
misinterpreted problems [8, 10, 17, 36]. Thus, collaboration is crucial 
since it allows UX evaluators to balance reliability and efciency 
by dividing the workload and consolidating their results [7, 17, 18]. 
Collaborations also alleviate the “evaluator efect,” the condition in 
which diferent evaluators identify diferent sets of UX problems 
even when analyzing the same test session [17, 20], and therefore 
ensures comprehensive coverage. 

Despite the value of working with others to improve reliability 
and completeness, few evaluators employ collaboration in prac-
tice [10]. A survey of 197 UX practitioners found that more than 
half (56%) of the participants analyzed data and wrote informal 
reports alone [7]. Similarly, our CHI22 survey showed that only 
37% reported collaboration when analyzing the same recordings 
[26]. These fndings show that although individual analysis can 
be problematic, efective collaboration is often hindered by lim-
ited resources. Thus, we identify an opportunity for AI assistance 
as an efective tool to augment the efciency of UX evaluators 
and reliability of results. Advances in natural language processing 
and machine learning (ML) enable automatic cues detection from 
acoustic, textual, and visual channels available in recorded sessions 
[6, 14]. Whereas UX evaluators may miss banal usability problems, 
especially under time pressure, leveraging AI to capture low level 
and commonplace issues could sustain high accuracy and efciency 
[6]. We consider diferent approaches in the next section. 

2.2 Incorporating AI into Usability Analysis 
The potential benefts of integrating AI in usability analysis gave 
rise to an increasing trend of using AI to detect UX problems 
[14, 16, 22, 37, 38, 47, 49]. User interaction events were utilized 
to create machine learning (ML) classifers to detect usability issues 
of websites [14, 38], mobile applications [22], and virtual reality 
(VR) applications [16]. However, only two-thirds of usability prob-
lems were detected by automated algorithms when compared to 
manual testing [14]. These results indicate that although automated 
methods can fnd meaningful problems, they cannot replace human 
reasoning required for completeness. Furthermore, these automatic 
methods were primarily based on users’ interaction logs [22], which 
are only applicable for specifc types of products, such as digital 
interfaces. Due to the limitations of automated methods, there is 
growing interest in human-AI collaboration where human deci-
sion making is supplemented with AI assistance [27]. Recent work 
developed tools where UX evaluators can utilize visualizations of 
ML-driven features to inform their identifcation of usability prob-
lems [8]. My dissertation research builds upon the tenet of AI as an 
assistant to augment manual analysis instead of automatic detection 
without humans-in-the-loop. 

2.3 Human-AI Collaboration via Interactive 
Conversational Assistants 

AI’s increasing ability to better detect patterned usability issues 
in rich visual and audio data streams enables assistive agents to 
work with humans toward increased productivity and problem 
solving [33, 45]. Conversation is a key mode of human-computer 
interaction [30]. Conversational assistants are increasing in both 
professional and personal use, where 70% of white-collar workers 
are expected to interact with text chatbots on a daily basis in 2022 
[13]. Since text and speech are the two main ways to interact with 
conversational assistants, prior work has compared the two modal-
ities and demonstrated solid diferences in user behavior between 
them [23, 24, 31, 34]. Recent research also demonstrated a need 
for AI to match relevant social norms and to show contextually 
relevant information [1, 46], and for conversational assistants to 
exhibit emotionally appropriate responses [12, 48]. Furthermore, 
providing explanations for predictions has been shown to alleviate 
users’ uncertainty and enhance their trust in AI systems [29]. Al-
though prior research investigated perceptions of conversational 
assistants in collaborative games [2, 3] and productivity applica-
tions [15], the use of a conversational agent for UX analysis has 
been unexplored. We hypothesize that an interactive assistant—in 
the form of a conversational agent—better supports analysis on 
rich behavioral data while also enhancing trust and engagement to 
guide UX evaluators in discovering problems otherwise overlooked. 
Through the reciprocal dialogue between humans and AI, a deeper 
cooperation is established, bringing huge benefts analogous to 
when people with diferent capabilities collaborate to achieve a 
goal [4, 21]. In sum, my dissertation research explores data rich 
capabilities alongside interactive engagement with conversational 
assistants, toward leveraging AI capability beyond data logs and 
toward collaborative and contextually relevant usability analysis 
and information sharing. 

3 RESEARCH QUESTIONS 
Despite AI being increasingly adopted in various areas of work, 
there is a need for better approaches to defning the role of AI as an 
assistant to UX evaluators. My dissertation explores the following 
research questions: 

• RQ1: What are the current practices, challenges, and 
desired improvements for collaborative data analysis 
of UX evaluators? [26] 

• RQ2: How does providing visualizations of AI-driven 
features support evaluators in analyzing usability test 
sessions? [41] 

• RQ3: What types of questions will UX evaluators ask 
a conversational AI assistant during analysis? How do 
their behavior difer between text and voice assistants? 
[under review] 

• RQ4: How do UX evaluators interact with a proactive 
AI assistant that provides suggestions? When should 
these suggestions be displayed? [proposed] 

• RQ5: How does providing a combination visualizations 
and proactive conversational assistants support UX 
evaluators? [proposed] 
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4 RESEARCH METHODS AND FINDINGS TO 
DATE 

4.1 Survey on Current Practices and Challenges 
(RQ1) 

Our prior work investigated current practices and challenges in 
conducting usability testing analysis through an online survey 
study with 279 UX professionals from six continents with diferent 
levels of UX experience, which was published at CHI 22 [26]. We 
asked about resources and collaborations leveraged during analysis, 
as well as desired features of new tools to better support their 
practices. Most respondents encountered challenges related to lack 
of time for analysis (66%) and difculty merging analysis from 
multiple evaluators (70%). Our results showed that UX evaluators 
needed an integrated platform for session review and annotation, 
and that they needed support to relieve them from manual and 
time-consuming aspects of data analysis. When asked about their 
willingness to use tools that involved AI—due to the increasing 
trend of incorporating AI into the UX feld [47, 49]—to support 
their analysis, 73% of the respondents were open to AI assistance to 
determine if a usability problem had occurred. This fnding indicates 
that AI assistance has the opportunity to be widely adopted by UX 
evaluators. 

4.2 Collaborative AI-Assisted UX Analysis Tool 
(RQ2) 

In response to the interest in AI and the need for an integrated plat-
form from our survey results [26], we built a collaborative visual 
analytics tool, CoUX, which seamlessly supports usability problem 
identifcation, annotation, and discussion in an integrated envi-
ronment [41]. To ease the discovery of usability problems, CoUX 
visualizes a set of problem-indicators based on acoustic, textual, and 
visual features as shown in Fig 1. These features were automatically 
extracted from the video and audio of a think-aloud session using 
machine learning techniques. The design of CoUX was informed by 
a formative study with two UX experts and on insights derived from 
the literature. We conducted a user study with six pairs of UX evalu-
ators on collaborative usability recording analysis tasks. The results 
indicated that CoUX was useful and efective in facilitating problem 
identifcation and collaborative teamwork. Then, we drew insights 
from participant survey and interview responses on how diferent 
ML-driven features were used to support independent analysis. For 
example, the acoustic, textual, and visual features were used by par-
ticipants as hints, anticipation of problems, and anchors to revisit 
in the second-pass analysis. We found that participants trusted the 
suggested sentiment analysis and UX keywords because they could 
intuitively draw connections to usability problems. For relatively 
new features (e.g., speech rate, scrolling speed, and scene breaks), 
they did not understand the underlying algorithm of how these 
features were derived and were less reliant on these during analysis. 
Since the Feature Panel was non-interactive, participants did not 
have a way to express their hesitancy towards certain ML-driven 
features or ask for an explanation of the underlying algorithm. 
Based on this investigation and observed users’ behavior, we con-
sider that an interactive assistant—in the form of a conversational 

agent—may provide timely explanations for uncertain ML-driven 
suggestions. 

4.3 Conversational Assistants for UX 
Evaluation (RQ3) 

To address the limitations of non-interactive visualizations, we 
investigated how interactive AI assistants augment UX evaluator 
analytic productivity and trust. To build AI assistants that could 
respond to a full range of questions from UX evaluators, we must 
frst understand what that full range might be. Thus, we conducted 
a design probe in which evaluators used an AI assistant with two 
modalities (voice and text) to ask any questions that they considered 
to be relevant to their analysis. Using the AI assistant as a probe, 
we investigated if the Q&A dynamic and modality of interaction 
improved evaluator efciency and trust during analysis. As it is still 
challenging to leverage state-of-the-art AI algorithms to accurately 
detect usability problems and provide natural language responses 
[9], we adopted a Wizard of Oz approach to simulate the AI assistant 
so that we could focus on answering our research questions. Wizard 
of Oz has been commonly used to circumvent technical limitations 
in prior research (e.g., [31, 32, 40]), and ofers an ability to explore 
the fdelity of the experience for participants, regardless of technical 
capability. Through a user study with 20 evaluators, we found 
that they mostly asked questions about user actions and mental 
model, as well as for suggestions from the AI assistant. We also 
found that participants felt text assistants were more efcient than 
voice assistants. Finally, we highlighted design considerations for 
improving future conversational AI assistants for UX analysis. The 
fndings from this study are currently under submission for review. 

5 EXPECTED NEXT STEPS 

5.1 Proactive Conversational Assistants for UX 
Evaluation (RQ4) 

The Q&A dynamic used in the design probe study for RQ3 was 
reactive (i.e., the CA only responded when prompted). In contrast, 
proactive dialogue initiated by the CA has been shown to provide 
adequate and timely assistance [25] and ofer better support to 
older adults than passive approaches [39]. Although proactive in-
teractions carry the risk of interruption, prior work has encouraged 
future research on how to improve the reception of such inter-
actions by reducing their interruption costs and increasing their 
value [28]. Thus, we were motivated to explore whether a proactive 
approach may better support UX evaluators. For example, the AI 
assistant may monitor actions that UX evaluators take in the tool. 
If the evaluator pauses for an extended period of time or misses a 
usability problem, the AI assistant may initiate a conversation to 
ask if the evaluator would like to see which features were detected. 
We foresee that this active and ongoing monitoring allows the AI 
assistant to proactively make suggestions to aid UX evaluators. We 
will explore if UX evaluators would be willing to accept proactive 
suggestions and if so, how these suggestions should be presented. 
Again using the Wizard of Oz approach, we will conduct a user 
study with UX evaluators and collect interactions recordings to 
analyze the participants’ usage of the AI assistant, including actions 
taken after each suggestion (e.g., ignored the suggestion, entered a 
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Figure 1: (B) The CoUX Feature Panel which contains: (b1) various features that indicate usability problems; (b2) scrolling speed 
graph. 

usability problem), and surveys and interviews to glean feedback 
about the experience. Findings from this proposed work would indi-
cate the desirability of proactive agents, and the timing of preferred 
proactive notifcations. 

5.2 Summative Study with AI Represented as 
both Visualizations and Conversational 
Assistants (RQ5) 

Based on the results from prior studies (RQ2 and RQ3), we found 
that visualizations and interactive agents ofered unique advan-
tages. For example, objective information such as how many clicks 
the user made could be answered with little controversy, where as 
other information like redesign recommendations were typically 
subjective and required more judgment. Compared to subjective 
responses from the AI assistant, participants were more trusting 
of factual and objective information, which were also mundane 
and easier to miss. Participants in the design probe (RQ3) felt it 
would be helpful to see quantitative statistics common to all record-
ings as a summary, which would reduce the need to repeat the 
same questions for each recording. On the other hand, the con-
versational assistant ofered many benefts, such as making some 
participants feel as if they were collaborating with a colleague with 
the chat window persisting as a record of their analysis. Thus, the 
advantages of both methods could be combined by providing UX 
evaluators with an overview of objective information in the form 
of a dashboard while having the opportunity to ask higher level 
subjective questions using the conversational interface. Informed 
by our fndings on interactions with conversational AI assistants 
(RQ3, RQ4), we will design an integrated web-based tool that har-
nesses non-interactive visualizations for detectable information 
(RQ2) and conversational AI assistants for subjective suggestions. 
We will conduct a summative user study validating the efectiveness 
of our new tool for usability evaluation, which will involve asking 
participants to analyze a series of usability test recordings using 
the new tool. 

Another open question in this step may be to compare interac-
tive conversational interfaces against non-interactive visualizations 
as a baseline. Although we posit that the CA may provide more au-
tonomy and timely information since visualizations always display 
information regardless of whether the evaluator needs it or not, we 
did not conduct a direct comparison of the two designs. There is 
ample room to change this project plan based on feedback and I 

think that this work will beneft tremendously from the suggestions 
of peers as well as experienced HCI researchers. 

6 ANTICIPATED CONTRIBUTIONS 
The rapid pace at which complex features and new products are 
being developed translates into an escalated need for more efcient 
UX testing and analysis. My dissertation research aims to elucidate 
factors contributing to human-AI collaborative work, particularly 
in the domain of usability analysis. This work will demonstrate the 
viability of human-AI collaboration, and the necessary technical 
and interactive elements that enhance such collaboration. Human-
AI collaboration is the future of work and will proliferate, therefore, 
determining factors that lead to smooth integration and high perfor-
mance is critical. We anticipate project outcomes in two key areas: 
(1) contributions to knowledge about how to design interactions 
with AI assistants for efective human-AI collaboration in the UX 
domain; (2) practical guidelines and web-based tools (involving 
text and voice assistants) to support UX evaluators in conducting 
analysis. These guidelines are also applicable to other domains of 
work where AI provides suggestions, since our fndings will identify 
interactions and representations that give rise to productive and 
trusting collaborations with AI. 

7 DISSERTATION STATUS AND LONG TERM 
GOALS 

I am currently a third-year Ph.D. student in Computing and Infor-
mation Sciences at Rochester Institute of Technology, advised by Dr. 
Kristen Shinohara. I am co-advised by Dr. Mingming Fan from the 
Hong Kong University of Science and Technology. I have completed 
all required coursework for the program (60 total semester credit 
hours). I successfully passed the Research Potential Assessment 
(RPA) at the end of my frst year, which is intended to determine 
early in a student’s academic life if they have the potential to suc-
cessfully obtain a Ph.D. from the program. I aim to complete the 
proposed research projects and dissertation defense before Spring 
2025. I have completed internships at industrial research labs dur-
ing Summer 2021 and Summer 2022. Upon graduation, I intend to 
seek research positions in industry where I can continue investi-
gating factors that lead to efective human-AI collaboration and 
advocating for the importance of UX research. 
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